Trump adminstration adds copper, coal (and others) to critical minerals list.

  • "National Security" is a hot topic as the courts try to figure out how far power should go the the executive branch
Trump ominous
AI image

The Energy Act of 2020 directed the USGS to update the list of critical minerals, and the list is timely to provide guidance for use of the Bipartisan Infrastructure Law funds, both for the USGS and other agencies. The act also indicates that at least every three years, the Department of the Interior must review and update the list of critical minerals, update the methodology used to identify potential critical minerals, take interagency feedback and public comment through the Federal Register, and ultimately finalize the list of critical minerals.

The 2022 list of critical minerals includes the following

  • Aluminum, used in almost all sectors of the economy
  • Antimony, used in lead-acid batteries and flame retardants
  • Arsenic, used in semi-conductors
  • Barite, used in hydrocarbon production.
  • Beryllium, used as an alloying agent in aerospace and defense industries
  • Bismuth, used in medical and atomic research
  • Cerium, used in catalytic converters, ceramics, glass, metallurgy, and polishing compounds
  • Cesium, used in research and development
  • Chromium, used primarily in stainless steel and other alloys
  • Cobalt, used in rechargeable batteries and superalloys
  • Dysprosium, used in permanent magnets, data storage devices, and lasers
  • Erbium, used in fiber optics, optical amplifiers, lasers, and glass colorants
  • Europium, used in phosphors and nuclear control rods
  • Fluorspar, used in the manufacture of aluminum, cement, steel, gasoline, and fluorine chemicals
  • Gadolinium, used in medical imaging, permanent magnets, and steelmaking
  • Gallium, used for integrated circuits and optical devices like LEDs
  • Germanium, used for fiber optics and night vision applications
  • Graphite , used for lubricants, batteries, and fuel cells
  • Hafnium, used for nuclear control rods, alloys, and high-temperature ceramics
  • Holmium, used in permanent magnets, nuclear control rods, and lasers
  • Indium, used in liquid crystal display screens
  • Iridium, used as coating of anodes for electrochemical processes and as a chemical catalyst
  • Lanthanum, used to produce catalysts, ceramics, glass, polishing compounds, metallurgy, and batteries
  • Lithium, used for rechargeable batteries
  • Lutetium, used in scintillators for medical imaging, electronics, and some cancer therapies
  • Magnesium, used as an alloy and for reducing metals
  • Manganese, used in steelmaking and batteries
  • Neodymium, used in permanent magnets, rubber catalysts, and in medical and industrial lasers
  • Nickel, used to make stainless steel, superalloys, and rechargeable batteries
  • Niobium, used mostly in steel and superalloys
  • Palladium, used in catalytic converters and as a catalyst agent
  • Platinum, used in catalytic converters
  • Praseodymium, used in permanent magnets, batteries, aerospace alloys, ceramics, and colorants
  • Rhodium, used in catalytic converters, electrical components, and as a catalyst
  • Rubidium, used for research and development in electronics
  • Ruthenium, used as catalysts, as well as electrical contacts and chip resistors in computers
  • Samarium, used in permanent magnets, as an absorber in nuclear reactors, and in cancer treatments
  • Scandium, used for alloys, ceramics, and fuel cells
  • Tantalum, used in electronic components, mostly capacitors and in superalloys
  • Tellurium, used in solar cells, thermoelectric devices, and as alloying additive
  • Terbium, used in permanent magnets, fiber optics, lasers, and solid-state devices
  • Thulium, used in various metal alloys and in lasers
  • Tin, used as protective coatings and alloys for steel
  • Titanium, used as a white pigment or metal alloys
  • Tungsten, primarily used to make wear-resistant metals
  • Vanadium, primarily used as alloying agent for iron and steel
  • Ytterbium, used for catalysts, scintillometers, lasers, and metallurgy
  • Yttrium, used for ceramic, catalysts, lasers, metallurgy, and phosphors
  • Zinc, primarily used in metallurgy to produce galvanized steel
  • Zirconium, used in the high-temperature ceramics and corrosion-resistant alloys.

The new list has added uranium, copper, silver, metallurgical coal, potash, silicon, and lead.

The "national security" angle has become more more "critical" when defining executive powers. That power is being tested in the courts with yesterday's Supreme Court arguments presented by the Trump administration in hopes to keep the executive power on tariffs, using national security as the argument.

Needless to say extending the list is a benefit to the presidents defense. If China withholds critical materials - or now copper, or lead, does that give the Pres. powers to retaliate with tariffs.

Top Brokers

Sponsored

General Risk Warning
investingLive Premium
Telegram Community
Gain Access